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Abstract

This paper describes the development of an implicit finite difference method for solving transient three-dimensional
incompressible free surface flows. To reduce the CPU time of explicit low-Reynolds number calculations, we have com-
bined a projection method with an implicit technique for treating the pressure on the free surface. The projection method
is employed to uncouple the velocity and the pressure fields, allowing each variable to be solved separately. We employ the
normal stress condition on the free surface to derive an implicit technique for calculating the pressure at the free surface.
Numerical results demonstrate that this modification is essential for the construction of methods that are more stable than
those provided by discretizing the free surface explicitly. In addition, we show that the proposed method can be applied to
viscoelastic fluids. Numerical results include the simulation of jet buckling and extrudate swell for Reynolds numbers in the
range [0.01,0.5].
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A very active and important research area in Computational Fluid Dynamics is the development of com-
putational methods for free surface flows. This can be explained by the fact that flows with free surfaces are
more difficult to resolve in general than confined flows. The position of the boundary is known only at the
initial time, and its new position has to be determined as part of the solution. The MAC method (Marker-
and-Cell), introduced by Harlow and Welch [18], was one of the first successful attempts to simulate viscous,
incompressible, transient flows with free surfaces. MAC was derived from the discretization of the Navier–
Stokes equations in primitive variables by finite differences on a uniform staggered mesh. In this method,
the shape of the free surface is determined by cells that are partially filled. Variants of the MAC method with
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distinct versions are widely available in the literature (see e.g. [2,8,9,18,19,25,33,41], and many others). How-
ever, one feature common to almost all these techniques is the explicit time discretization of the momentum
equations by Euler’s method. Indeed, for inertial flows (Re > 1) explicit methods do not impose too severe a
restriction on the time step so that numerical solutions of free surface flows can be obtained in reasonable time
(e.g. [38]). However, Reynolds numbers of order 10�1 to 10�3 can be easily found in applications involving the
flow of polymers such as extrudate swell, injection moulding and jet buckling. For low Reynolds number
flows, explicit methods have a stringent stability restriction leading to very small time steps. One way to over-
come this restriction is to use an implicit discretization that, one might expect, would lead to a substantial
reduction in CPU time. There would appear to be only a few papers (e.g. [13,15,17,31,33,47]) presenting impli-
cit formulations for free surface flows, and these tend to be for two-dimensional flows where the Reynolds
number is not excessively small. However, there are some works that employ the level set method to model
free surface flows. For instance, Fedkiw et al. [12] presented a numerical method for treating interfaces using
an Eulerian scheme for multi-material flows while Nguyen et al. [26] solved the Euler equations to simulate
multiphase flows of inviscid fluids. To calculate the velocity field they used the projection method in a similar
fashion as in the MAC method [18]. They reported some results for 1D, 2D and 3D problems. One interesting
work that deals with free surface viscous flows was presented by Vincent and Caltagirone [45] (see also [46]).
They solved the full Navier–Stokes equations for interfacial flows on a staggered grid using the finite volume
method. The interface was represented by an advection equation which was treated by a high order TVD
(Total Variation Diminishing) scheme. Their results include the simulation of 3D advection of a sphere
and the simulation of a 2D Newtonian jet filling a square box.

More recently, the authors presented a novel two-dimensional implicit method (see Oishi et al. [28]) for
unsteady two-dimensional free surface flows using a Marker-and-Cell approach. In that method the implicit
Euler scheme was employed in the discretization of the diffusion terms while the free surface boundary con-
ditions were discretized implicitly. Numerical experiments obtained by Oishi et al. [28] suggested that when the
equation for the pressure on the free surface was discretized explicitly, a parabolic-type stability condition was
required to be imposed on the time step, independently of whether the diffusion terms of the Navier–Stokes
equations were discretized explicitly or implicitly. Indeed, it was found numerically that in order to obtain a
stable implicit solver for the Navier–Stokes equations it was crucial that the pressure condition at the free sur-
face was required to be solved implicitly. However, when the pressure equation at the free surface was discret-
ized implicitly it coupled the velocity and pressure fields so that a much larger linear system had to be solved at
each time step. To overcome this, Oishi et al. [28] developed numerical techniques for uncoupling the velocity
and pressure fields while still maintaining the implicit discretization of the pressure equation at the free sur-
face. More recently, Oishi et al. [29] have performed a rigorous stability analysis on discretizations of a par-
adigm problem, the 1-D heat equation, solved on a staggered grid with the implicit boundary conditions
replaced by explicit boundary conditions and this model problem has shed light as to why the approach
described above is effective.

In this work we employ the ideas presented by Oishi et al. (see [28]) to develop a stable 3D implicit method
for solving incompressible free surface flows. This novel formulation combines an accurate projection method
(described in [30]) with a new formula for the pressure-update and an implicit technique for computing the
pressure on the free surface. This last point is very important because, as was shown in [28], the implicit dis-
cretization of the boundary conditions at the free surface is crucial for achieving a stable implicit method. The
performance of the numerical method is demonstrated by simulating three-dimensional free surface flow prob-
lems with low Reynolds numbers and moving free surfaces. Moreover, we show that the proposed method can
also be applied to viscoelastic fluids.

This paper is organized as follows. First the governing equations together with the boundary conditions are
described. Section 3 presents the details of the numerical method: a description of the projection method, the
implicit formulation for the pressure at the free surface, the algorithm itself, the detailed finite difference
approximations and a discussion on the time step stability restriction. Numerical results are given in Section
4. The flow of an Oldroyd-B fluid inside a 3D tube is simulated and compared with the corresponding analytic
solution. A comparison between the explicit and implicit techniques is then effected. Finally, the implicit tech-
nique is employed to solve complex free surface flows: both extrudate swell of a 3D Oldroyd-B fluid and the
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buckling of a Newtonian jet are simulated; extremely small Reynolds numbers were used in both cases. Section
5 contains some concluding remarks.

2. Governing equations and boundary conditions

In dimensionless conservative form, the equations for incompressible viscous flow in primitive variables can
be written as
ou

ot
þr � ðuuÞ ¼ �rp þ a

1

Re
r2uþ br � Sþ 1

Fr2
g; ð1Þ
and the mass conservation equation as
r � u ¼ 0; ð2Þ

where S is the non-Newtonian part of the extra stress tensor (hereafter simply called the non-Newtonian stress
tensor) that is defined by an appropriate constitutive relationship. For Newtonian flows S ¼ 0 so this can be
achieved by setting a ¼ 1 and b ¼ 0 in the momentum Eq. (1). In this work we shall also be concerned with
viscoelastic flows governed by the Oldroyd-B constitutive equation. In this case, we set a ¼ k2

k1
and choose

b ¼ 1 in the momentum equation. The non-Newtonian stress tensor S is obtained from the Oldroyd-B con-
stitutive relationship (see Tomé et al. [44])
oS

ot
¼ �ðu � rÞSþ ðruÞT Sþ SðruÞ þ 1

We
1

Re
1� k2

k1

� �
ððruÞ þ ðruÞT Þ � S

� �
; ð3Þ
where k1 and k2 are relaxation and retardation time constants, respectively, characterizing the Oldroyd-B
model and We ¼ k1

U
L is the Weissenberg number.

In the above equations t is time, u is the velocity field, p is the pressure per unit of mass and g is the grav-
itational field. The non-dimensional parameters Re ¼ qUL=l and Fr ¼ U=

ffiffiffiffiffiffi
gL
p

are, respectively, the Reynolds
and Froude numbers. L and U are the length and the velocity scales, l is the dynamic viscosity and q is the
density of the fluid.

The numerical method proposed to solve Eqs. (1)–(3) is an adaptation of the GENSMAC3D method [41].
A strategy for the classification of the cells in the mesh is used to represent the moving fluid. Fig. 1(a) illus-
trates this classification for a two-dimensional flow (in Fig. 1(a) the empty cells are represented by blank cells).
In the present work, the same cell classification is used, that is

� Empty Cell (E): Cells that do not contain fluid;
� Full Cell (F): Cells that contain fluid and do not possess any faces in contact with empty cell faces;
a b

Fig. 1. Type of cells (a) and position of the variables u, v, w, p and S on the staggered grid (b).
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� Surface Cell (S): Cells that contain fluid and necessarily have faces in contact with empty cell faces;
� Boundary Cell (B): Cells that define the positions of rigid boundaries;
� Inflow Cell (I): Cells that define entrance of the fluid (inflow);
� Outflow Cell (O): Cells that define exit of the fluid (outflow).

In order to solve Eqs. (1)–(3) a staggered grid is employed. A typical cell for the three-dimensional case is
shown in Fig. 1(b).

2.1. Initial and boundary conditions

Eqs. (1) and (2) consist of a system of partial differential equations for the unknowns u, v, w and p. To solve
this system we need to impose appropriate initial and boundary conditions. In practice, there are four types of
boundaries to be considered, namely: inflows, outflows, solid walls and moving free surfaces. At inflows the
velocity is known (u ¼ uinf ) and at outflows homogeneous Neumann conditions (ou

on ¼ 0) are specified. On solid
walls, it is assumed that the fluid adheres to the surface (u ¼ 0).

On the moving free surface, it is necessary to impose conditions for the velocity and pressure. If surface
tension forces are neglected, then these conditions can be summarized as
n � r � n ¼ 0; ð4Þ

and
m1 � r � n ¼ 0 and m2 � r � n ¼ 0; ð5Þ

where r is the stress tensor given by
r ¼ �pIþ a
1

Re
ðruÞ þ ðruÞT
h i

þ bS; ð6Þ
where, again, a ¼ 1 and b ¼ 0 for Newtonian flows and a ¼ k2=k1 and b ¼ 1 for Oldroyd-B fluids.
In Eqs. (4) and (5), n ¼ ðn1; n2; n3Þ represents the unit normal vector external to the surface, and

m1 ¼ ðm11;m12;m13Þ and m2 ¼ ðm21;m22;m23Þ are the unit tangent vectors to the free surface. If we take Carte-
sian coordinates, then Eqs. (4), (5) can be written as (see [44])
p ¼ a
2

Re
ou
ox

n2
x þ

ov
oy

n2
y þ

ow
oz

n2
z þ

ov
ox
þ ou

oy

� �
nxny

�
þ ow

ox
þ ou

oz

� �
nxnz þ

ow
oy
þ ov

oz

� �
nynz

�
þ b Sxxn2

x þ Syyn2
y þ Szzn2

z þ 2 Sxynxny þ Sxznxnz þ Syznynz

� �h i
; ð7Þ

2
ou
ox

nxm1x þ 2
ozv
oy

nym1y þ 2
ow
oz

nzm1z þ
ov
ox
þ ou

oy

� �
ðm1xny þ m1ynxÞ þ

ow
ox
þ ou

oz

� �
m1xnz þ m1znxð Þ

þ ow
oy
þ ov

oz

� �
m1ynz þ m1zny

� �
¼ �Re

b
a

Sxxnxm1x þ Syynym1y þ Szznzm1z þ Sxy m1xny þ m1ynx

� �	
þSxz m1xnz þ m1znxð Þ þ Syz m1ynz þ m1znx

� �

; ð8Þ

2
ou
ox

nxm2x þ 2
ov
oy

nym2y þ 2
ow
oz

nzm2z þ
ov
ox
þ ou

oy

� �
ðm2xny þ m2ynxÞ þ

ow
ox
þ ou

oz

� �
m2xnz þ m2znxð Þ

þ ow
oy
þ ov

oz

� �
m2ynz þ m2zny

� �
¼ �Re

b
a
½Sxxnxm2x þ Syynym2y þ Szznzm2z þ Sxy m2xny þ m2ynx

� �
þ Sxzðm2xnz þ m2znxÞ þ Syz m2ynz þ m2znx

� �
�: ð9Þ
Eqs. (7)–(9) represent the appropriate boundary conditions at a fluid free surface (see Batchelor page 153 [4]).
It is known that three-dimensional free surface flows are highly affected by the manner in which these condi-
tions are applied. However, several authors approximate the normal stress condition (7) simply by setting
p ¼ 0 (e.g. [3,27,22]). This could be used only in the case of Newtonian flows possessing Re� 1. The tangen-
tial conditions have usually been ignored (see [24]).
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Fig. 2. Types of planar surfaces: (a) 1D-planar surface, (b) 2D-planar surface and (c) 3D-planar surface.
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To apply the conditions above we follow the ideas presented in Tomé et al. [41]. It is supposed that the mesh
spacing is sufficiently small that the free surface can be locally approximated by a planar surface. Following
Tomé et al., three cases are considered.

(i) 1D-planar surfaces parallel to one co-ordinate axis. These surfaces are identified by S-cells having only
one face in contact with an E-cell face.

(ii) 2D-planar surfaces are assumed to make 45� with two co-ordinate axes and are recognized by S-cells hav-
ing two adjacent faces in contact with E-cell faces.

(iii) 3D-planar surfaces are considered to be surfaces that make 60� with three co-ordinate axes and are rep-
resented by S-cells having three adjacent faces in contact with E-cell faces. Fig. 2 displays examples of
1D, 2D and 3D-planar surfaces. By using these three types of approximations for the free surface, the
normal stress condition (7) is used to compute the pressure on the free surface while the tangential stress
conditions, Eqs. (8) and (9), are employed to calculate the velocities at the empty cells. For details see
[41].

An implicit technique involving the normal stress condition will be described in Section 3.1.

3. Numerical method

The numerical method for solving Eqs. (1) and (2) will be based on the projection method (pioneered by
Chorin [9]) while the constitutive Eq. (3) is approximated by a second-order finite difference method. In sum-
mary, the solution of the momentum Eq. (1) is obtained by calculating a provisional velocity field followed by
the solution of an elliptic equation to enforce mass conservation (2).

The projection methods are based on the Helmholtz decomposition (see [11]) which states that every
smooth vector field can be decomposed as a sum of a gradient and a divergence-free vector field, i.e.,
eu ¼ uþr/: ð10Þ
Many authors (e.g. [6,16,17,34]) have proposed different versions of the projection method for confined
Newtonian flow calculations and recently there have been a few papers dealing with free surface flows (see
e.g. [17,32,47]). We use these ideas to solve the equations for viscoelastic free surface flows as follows:

There are several ways to solve Eqs. (1) and (2) using implicit techniques (e.g. [5,6,20,21]). However, we are
interested in low Reynolds number free surface viscoelastic flows so that the convective terms are not impor-
tant while the non-Newtonian stress tensor S is defined by an hyperbolic equation and is treated as a source
term. Thus, if we use the Crank–Nicolson method for the viscous term then Eqs. (1) and (2) can be written in
the form
unþ1

dt
� a

2Re
r2unþ1 ¼ un

dt
�r � ðuuÞn �rpnþ1 þ a

2Re
r2un þ br � Sn þ 1

Fr2
gn; ð11Þ

r � unþ1 ¼ 0: ð12Þ
To uncouple the velocity and pressure fields in Eqs. (11) and (12) we apply the projection method as follows.
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First, we solve Eq. (11) for a provisional velocity field eu

eu
dt
� a

2Re
r2eu ¼ un

dt
�r � ðuuÞn �rpn þ a

2Re
r2un þ br � Sn þ 1

Fr2
gn; ð13Þ
where the boundary conditions for eu are the same as for un, and pn represents the pressure at time t ¼ tn. Using
Eq. (10), the velocity field can be decomposed as
unþ1 ¼ eu �r/nþ1 ¼ eu � dtrwnþ1: ð14Þ
Taking the divergence of Eq. (14) and imposing mass conservation for unþ1, one obtains the following Poisson
equation for wnþ1
r2wnþ1 ¼ 1

dt
r � eu: ð15Þ
This equation is solved in the fluid region and is applied at each full cell F within the mesh. The equations for
wnþ1 on the free surface are discussed in the next section.

To obtain an equation for the pressure, we introduce eu from Eq. (14) into Eq. (13) and then subtract it from
Eq. (11) to obtain
pnþ1 ¼ pn þ wnþ1 � a
dt

2Re
r2wnþ1: ð16Þ
Thus, the velocity and the pressure field are obtained by solving Eqs. (13)–(16).
The non-Newtonian stress tensor S is calculated from the Oldroyd-B constitutive equation
oS

ot
¼ �ðunþ1 � rÞSþ ðrunþ1ÞTSþ Sðrunþ1Þ þ 1

We
�Sþ 1

Re
1� k2

k1

� �
ððrunþ1Þ þ ðrunþ1ÞTÞ

� �
: ð17Þ
Eq. (17) is solved by an explicit Euler approximation.

3.1. Implicit formulation for the pressure at the free surface

Recently, Oishi et al. [28] presented a two-dimensional numerical technique using the implicit Euler method
to solve the provisional velocity field together with a methodology to calculate the pressure on the free surface.
The pressure was calculated by the simpler equation
pnþ1 ¼ pn þ wnþ1: ð18Þ

In this work we shall employ Eq. (16) to compute the pressure on the free surface using implicit techniques.
Following the ideas of [28], the equation for the pressure at the free surface (7) will be treated implicitly,

whereas the tangential conditions given by Eqs. (8) and (9) will be discretized explicitly. Eq. (7), in discrete
form, can then be rewritten as
pnþ1 ¼ a
2

Re
ou
ox

n2
x þ

ov
oy

n2
y þ

ow
oz

n2
z þ

ov
ox
þ ou

oy

� �
nxny þ

ow
ox
þ ou

oz

� �
nxnz þ

ow
oy
þ ov

oz

� �
nynz

� �nþ1

þ b Sxxn2
x þ Syyn2

y þ Szzn2
z þ 2ðSxynxny þ Sxznxnz þ SyznynzÞ

h in
: ð19Þ
We point out that this equation couples the velocity and the pressure and a strategy for decoupling them was
essential for the algorithm to be competitively efficient. The strategy we adopted uses the equation for the cor-
rected velocity and the pressure (see Eqs. (14) and (16)) to construct new equations for the potential wnþ1 at the
free surface. In previous works (e.g. [38,41,42]), the pressure was calculated explicitly using Eq. (7) so that wnþ1

was set to zero on the free surface cells.
In what follows we present a derivation of the equations corresponding to each type of free surface approx-

imation given in Section 2.1.
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Fig. 3. (a) Normal vector is pointing in the direction of one of the co-ordinate directions, (b) normal vector is pointing in a direction
making 45� with two adjacent co-ordinate axes, and (c) normal vector is pointing in a direction making 60� with two adjacent co-ordinate
axes.
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(i) 1D-planar surfaces: To illustrate how Eq. (19) might be employed to obtain an equation for the potential
wnþ1 at the free surface, let us consider the particular case of a S-cell with the ðk þ 1

2
Þ-face in contact with

an E-cell face as shown in Fig. 3a. In this case, the normal vector is n ¼ ð0; 0; 1Þ (n ¼ ð0; 0;�1Þ results in
the same equation) and Eq. (19) is reduced to
pnþ1 ¼ a
2

Re
ownþ1

oz

� �
þ bðSzzÞn: ð20Þ
Now, from the mass conservation Eq. (2) discretized at time level nþ 1 we have

nþ1 nþ1 nþ1
ow
oz
¼ � ou

ox
� ov

oy
; ð21Þ
and introducing it into Eq. (20) we obtain
pnþ1 ¼ �a
2

Re
ounþ1

ox
þ ovnþ1

oy

� �
þ bðSzzÞn: ð22Þ
Eq. (14), written in component form, yields

nþ18

unþ1 ¼ eu � dt ow

ox ;

vnþ1 ¼ ev � dt ownþ1

oy ;

wnþ1 ¼ ew � dt ownþ1

oz ;

>><>>: ð23Þ
so that introducing unþ1 and vnþ1 into Eq. (22) we obtain
pnþ1 ¼ a
2

Re
� oeu

ox
þ dt

o2wnþ1

ox2
� oev

oy
þ dt

o2wnþ1

oy2

� �
þ bðSzzÞn: ð24Þ
Finally, substituting Eq. (16) into Eq. (24) and regrouping the terms we obtain the following equation for the
potential wnþ1

2 nþ1 2 nþ1� � � �

wnþ1 � a

dt
2Re
r2wnþ1 � a

2dt
Re

o w
ox2

þ o w
oy2

¼ �a
2

Re
oeu
ox
þ oev

oy
� pn þ bðSzzÞn: ð25Þ
The other cases of 1D-planar surfaces with n ¼ ð0;�1; 0Þ and n ¼ ð�1; 0; 0Þ are treated similarly.

(ii) 2D-planar surfaces: Let us consider the S-cell in Fig. 3b. For this cell we assume the normal vector is given

by n ¼
ffiffi
2
p

2
; 0;

ffiffi
2
p

2

� �
and Eq. (19) becomes
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pnþ1 ¼ a
Re

ounþ1

ox
þ ownþ1

oz
þ ounþ1

oz
þ ownþ1

ox

� �
þ b

1

2
Sxx þ 1

2
Szz þ Sxz

� �n

; ð26Þ
and, upon using the mass conservation equation, simplifies to
pnþ1 ¼ a
Re
� ovnþ1

oy
þ ounþ1

oz
þ ownþ1

ox

� �
þ b

1

2
Sxx þ 1

2
Szz þ Sxz

� �n

: ð27Þ
Now, substituting unþ1, vnþ1 and wnþ1 from Eq. (23) into Eq. (27) we get
pnþ1 ¼ a
Re
� oev

oy
þ dt

o2wnþ1

oy2
þ oeu

oz
� dt

o2wnþ1

oxoz
þ oew

ox
� dt

o2wnþ1

oxoz

� �
þ b

1

2
Sxx þ 1

2
Szz þ Sxz

� �n

: ð28Þ
The equation for wnþ1 is obtained by substituting Eq. (16) into Eq. (28) and after regrouping the terms we
obtain

2 nþ1 2 nþ1� � � � � �n
wnþ1 � a
dt

2Re
r2wnþ1 � a

dt
Re

o w
oy2

� 2
o w
oxoz

¼ � a
Re

oev
oy
� oeu

oz
� oew

ox
� pn þ b

1

2
Sxx þ 1

2
Szz þ Sxz :

ð29Þ

We have presented the equations for a S-cell with the faces ðiþ 1

2
Þ and ðk þ 1

2
Þ in contact with E-cell faces. The

corresponding equations for the other configurations of S-cells having two adjacent faces contiguous with E-
cell faces are obtained in a similar manner.

(iii) 3D-planar surfaces: In total there are 8 possible configurations of these surfaces. We will present the equa-
tions for a S-cell with the faces ðiþ 1

2
Þ, ðjþ 1

2
Þ and ðk þ 1

2
Þ in contact with the faces of E-cells (see Fig. 3c).

For this case, we take n ¼
ffiffi
3
p

3
;
ffiffi
3
p

3
;
ffiffi
3
p

3

� �
and Eq. (19) becomes
pnþ1 ¼ a
2

3Re
ounþ1

oy
þ ovnþ1

ox
þ ounþ1

oz
þ ownþ1

ox
þ ovnþ1

oz
þ ownþ1

oy

� �
þ b

1

3
½Sxx þ Syy þ Szz þ 2ðSxy þ Sxz þ SyzÞ�n;

ð30Þ

and, upon introducing unþ1, vnþ1 and wnþ1 from Eq. (23), we obtain
pnþ1 ¼ a
2

3Re
oeu
oy
þ oeu

oz
þ oev

ox
þ oev

oz
þ oew

ox
þ oew

oy
� 2dt

o2wnþ1

oyox
þ o2wnþ1

ozox
þ o2wnþ1

ozoy

� �� �
þ b

1

3
½Sxx þ Syy þ Szz þ 2ðSxy þ Sxz þ SyzÞ�n: ð31Þ
The final equation for wnþ1 is obtained by introducing Eq. (16) into Eq. (31) and, after some simplifications,
the following is obtained:

2 nþ1 2 nþ1 2 nþ1� �

wnþ1 � a

dt
2Re
r2wnþ1 þ a

4dt
3Re

o w
oyox

þ o w
ozox

þ o w
ozoy

¼ a
2

3Re
oeu
oy
þ oeu

oz
þ oev

ox
þ oev

oz
þ oew

ox
þ oew

oy

� �
þ b

1

3
½Sxx þ Syy þ Szz þ 2ðSxy þ Sxz þ SyzÞ�n � pn: ð32Þ
The equations for wnþ1 corresponding to the other configurations of 3D-planar surfaces are carried out in a
similar way.

We observe that when solving these equations for surface cells, the values of wnþ1 on empty cells will be
involved in which case wnþ1 ¼ 0.

3.2. Algorithm

It is supposed that at time t0, the solenoidal-velocity field uðx; y; z; t0Þ is known and suitable boundary con-
ditions for the velocity and pressure are given. The updated velocity field uðx; y; z; tÞ, the pressure field
pðx; y; z; tÞ and the non-Newtonian stress tensor Sðx; y; z; tÞ at time t ¼ t0 þ dt are calculated by the following
sequence of the steps:
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STEP 1: Calculate the intermediate velocity field euðx; y; z; tÞ from Eq. (13) implicitly using a Crank–Nicolson
discretization.

STEP 2: Solve the Poisson Eq. (15) together with the equations derived for the potential function wnþ1 at the
free surface (see Section 3.1). The appropriate boundary conditions for these equations are wnþ1 ¼ 0
on outflows while the homogeneous Neumann condition is used for fixed boundaries and inflows.
The resulting linear system for wnþ1 is sparse and non-symmetric: we therefore employ the bi-con-
jugated gradient method with pre-conditioning to solve this linear system. The corresponding finite
difference equations will be given in the next section.

STEP 3: Compute the final velocity field from (14).
STEP 4: Compute the pressure from (16).
STEP 5: Calculate the stress tensor S from Eq. (17). This equation is solved by explicit finite differences and

the details of the equations involved can be found in Tomé et al. [44].
STEP 6: Update the positions of the marker particles by solving
_x ¼ unþ1; ð33Þ

by the explicit Euler’s method.

3.3. Finite difference equations

We present only the finite difference approximations corresponding to the equations of STEP 1, STEP 2

and STEP 4 of the computational algorithm outlined in the previous sub-section. The corresponding finite
difference equations for STEP 3, STEP 5 and STEP 6 can be found in the references [41,44].

The momentum equation, Eq. (13), is approximated as follows: the time derivative and the viscous terms
are approximated by the Crank–Nicolson method while the pressure gradient and the divergence of the non-
Newtonian stress tensor S are discretized using central differences. The convective terms are calculated by the
high order upwind scheme CUBISTA of Alves et al. [1]. Details of the finite difference equations for the CUBI-
STA method can be found in [14]. For instance, the x-component of the momentum equation is approximated
by the following difference equation
"
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where the convective terms CðuuÞ, CðvuÞ and CðwuÞ are approximated by the CUBISTA method. Terms like
Syx

iþ1
2;jþ

1
2;k

are obtained by averaging its nearest neighbours, for instance,
Syx
iþ1

2;jþ
1
2;k
¼

Syx
i;j;k þ Syx

iþ1;j;k þ Syx
i;jþ1;k þ Syx

iþ1;jþ1;k

4
:

The y- and z-components of the momentum equations are obtained in the same way. Therefore, the calcu-
lation of the provisional velocity field eu leads to the solution of three symmetric linear systems which are
solved by the conjugate gradient method. The implementation of the conjugate gradient solver follows the
ideas presented by Tomé and McKee [40].
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3.3.1. Calculation of the potential function wnþ1

The Poisson Eq. (15) is discretized by the following second-order difference equation
wnþ1
iþ1;j;k � 2wnþ1
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dx2
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 !
: ð35Þ
Eq. (35) is applied at each full cell in the domain. The calculation of wnþ1
i;j;k at surface cells is carried out fol-

lowing the ideas detailed in Section 3.1 with appropriate approximations for each type of surface, i.e. 1D, 2D

or 3D-planar surfaces. For instance, if we consider a S-cell having only the top face in contact with an E-cell as
shown in Fig. 4 then we assume that the free surface is a 1D-planar surface parallel to the x- and y-axes and
take n ¼ ð0; 0; 1Þ. In this case, wnþ1

i;j;k is given by Eq. (25) which becomes
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In Eq. (36) the potential wnþ1
i;j;kþ1 does not appear because it is assumed that it is zero in empty cells. The finite

difference equations for the other configurations of 1D-planar surfaces are obtained in a similar manner.
For surface cells having two adjacent faces in contact with empty cell faces the potential wnþ1

i;j;k is computed
by using the equations derived for 2D-planar surfaces. For instance if a S-cell has the ðiþ 1

2
Þ and ðk þ 1

2
Þ-faces

contiguous with E-cell faces then wnþ1
i;j;k is calculated from Eq. (29) applied at the centre of the surface cell. The

second derivatives are approximated by second-order differences while the derivatives o2wnþ1

oxoz , oeu
oz and oew

ox are
replaced, respectively, by the first-order approximations
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Fig. 4. Surface cell with only the top face in contact with an empty cell face.
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In Eq. (38), the values of the tilde-velocities at the centre of the cells are approximated by the values in the
inner cells, namely,
eui;j;k 	 eui�1

2;j;k
; eui;j;k�1 	 eui�1

2;j;k�1; ewi;j;k 	 ewi;j;k�1
2
; ewi�1;j;k 	 ewi�1;j;k�1

2
:

Thus, by introducing these approximations into Eq. (29) and regrouping the terms, we obtain the following
difference equation
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Again, we point out that the potentials wnþ1
iþ1;j;k and wnþ1

i;j;kþ1 do not appear in the equation above because they
lie in empty cells where they are assumed to be zero. The equations for wnþ1

i;j;k at surface cells with two empty cell
neighbours, but different configurations, are treated similarly.

For surface cells having three adjacent faces in contact with empty cell faces, the finite difference equations
for the potential can be obtained similarly. For instance, if we consider a S-cell with the faces ðiþ 1

2
Þ, ðjþ 1

2
Þ

and ðk þ 1
2
Þ in contact with E-cells then the potential wnþ1

i;j;k is calculated from Eq. (32). To approximate this
equation by finite differences we proceed as in the case of surface cells with two adjacent faces in contact with
empty cell faces (e.g. see Eq. (39)). The cross derivatives are first-order approximated (see Eq. (37)) and the
second-order derivatives of wnþ1 are approximated by central differences. Thus, Eq. (32) is approximated
by the following difference equation
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The other cases of surface cells having three adjacent cells with empty cell faces are dealt with similarly.
The potential function wnþ1 is then calculated by solving a sparse non-symmetric linear system composed of

the equations from the discrete Poisson Eq. (35) together with the finite difference equations obtained for the
surface cells (e.g. (36), (39), (40)). This linear system is efficiently solved by the preconditioned bi-conjugate
gradient method with diagonal scaling.

After the potential function wnþ1
i;j;k has been calculated for each full and surface cell, the pressure is obtained

explicitly by approximating Eq. (16) at the centre of these cells by the following difference equation
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3.4. Time step calculation

If the momentum equations were solved explicitly then this would lead to the following time step
restrictions:
dt <dtCFL ¼ max
dx
juj ;

dy
jvj ;

dz
jwj

� �
; ð42Þ

dt <dtvisc ¼
Re
2

dx2dy2dz2

dx2dy2 þ dx2dz2 þ dy2dz2
: ð43Þ
Since we are employing the Crank–Nicolson we might expect the viscous time step to be unrestricted or, at
least, have a less restricted stability condition. Oishi et al. [28] found in practice that the latter was the case. To
gain some insight as to why this is so, Oishi et al. [29] studied the model problem of the Crank–Nicolson
approximation of the one-dimensional heat equation on a staggered grid with explicit boundary conditions.
They showed rigorously that the Crank–Nicolson was stable provided r ¼ dt=dx2 < 2. However, for free sur-
face flows no analysis has yet been provided so that the time step for the implicit method will be calculated
based on a relaxation of the restriction (43) as follows.

Following Tomé and McKee [40], the time step selected would be given by
dt ¼ FACT 
minfFACT1 
 dtCFL;FACT2 
 dtviscg; ð44Þ

where FACT;FACT1;FACT2 > 0. The factors FACT;FACT1;FACT2 appear as a conservative measure be-
cause the correct values of the velocities satisfying mass conservation are not known at this stage. The auto-
matic time step selection procedure follows that outlined in Tomé et al. [41].

So far, Freeflow3D has performed explicit calculations and typical values of the constants in (44) have been
0.3 for the constant FACT and 0.5 for the constants FACT1;FACT2. However, if Re < 1 the relevant restric-
tion on the time step is dtvisc which depends on the mesh spacing and on the Reynolds number only. Thus, if the
Reynolds number is very small, which is often predictable for viscoelastic flows, the time step can be too small
to employ explicit calculations in any reasonable time. However, two-dimensional calculations with the implicit
method (see Oishi et al. [28]) have shown that the restriction (43) can be improved by making FACT2 > 1 so
that a much larger time step can be employed when computing low Reynolds number free surface flows.

In the next section we simulate extrudate swell of Oldroyd-B fluids and jet buckling of Newtonian fluids for
very small Reynolds numbers. Validation results are also presented.

4. Numerical simulation of low Re free surface flows

The implicit technique described in the previous sections was implemented into the Freeflow3D code (see
Castelo et al. [7]) to simulate unsteady three-dimensional low Reynolds number free surface flows of Newto-
nian and Oldroyd-B fluids. It was used to simulate the flow of an Oldroyd-B fluid in a tube and the numerical
results were compared with the analytic solution. Time-dependent extrudate swell and jet buckling for very
small Reynolds numbers were also simulated. The results presented in this section were obtained on the com-
puter: Sun Fire AMD Athlon(tm) 64/Opteron(tm), 2193 MHz, 24 Gb of RAM memory, 4 Dual core proces-
sors, under Operating System Solaris.

4.1. Validation results

To validate the numerical technique presented in this paper we simulated the flow of an Oldroyd-B fluid in
a tube. We considered a tube of radius R and length 5R (see Fig. 5) and imposed a steady state parabolic flow
at the tube entrance given by
wðx; yÞ ¼ 2U R2 � x2 � y2
	 


; u ¼ v ¼ 0: ð45Þ
In this case, it can be shown that the analytic solutions for the components of the non-Newtonian stress
tensor S are given by



Fig. 5. Numerical simulation of the flow of an Oldroyd-B fluid in a tube: 3D case.
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The following input data were employed: R ¼ 1 m, gravity was neglected, l ¼ 10 Pa s; q ¼ 1 kg m�3;
k1 ¼ 1 s;k2 ¼ 0:5 s. The scaling parameters were L ¼ R; U ¼ 1 m s�1. Thus, Re ¼ 0:1 and We ¼ 1. To analyse
the convergence of the method we employed mesh refinement and used four embedded uniform meshes
defined by: M0 – 12� 12� 30 cells (dxM0 ¼ 0:1667 m), M1 – 16� 16� 40 cells (dxM1 ¼ 0:1250 m), M2 –
22� 22� 55 cells (dxM2 ¼ 0:0909 m) and M3 – 28� 28� 70 cells (dxM3 ¼ 0:071428 m).

We ran the Freeflow-3D code with the above data. We started with an empty tube and injected fluid at the
tube entrance until the tube was full and the steady state had been attained.

Since Re ¼ 0:1, dt was calculated using restriction dtvisc (43). The constants used in these simulations were
chosen to be FACT ¼ 0:5 and FACT2 ¼ 5:0 (FACT1 was set to 0.5) for meshes M0, M1 and M2. In this case,
we had time step sizes of 1:15742� 10�3 s for mesh M0, 6:51000� 10�4 s for mesh M1. The simulation using
mesh M2 did not converge with FACT ¼ 0:5 and therefore it was restarted with FACT ¼ 0:1 so that the time
step employed in this run was dt ¼ 6:68800� 10�5 s. For mesh M3 we used FACT ¼ 0:1 which gave
dt ¼ 4:25170� 10�5 s. In order to assess the efficiency of the implicit technique we also simulated the tube flow
on mesh M0 using the explicit technique of Tomé et al. [44]. In this simulation, the time step size was calcu-
lated using Eq. (44) with FACT ¼ 0:2 and FACT2 ¼ 0:5 resulting in a time step size of 4:62963� 10�5 s. To
compare the accuracy of both techniques, we considered the cross section of the tube at z ¼ 2:5R and com-
puted the relative l2-norm of the errors
EðCÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij

Cexact � Cnumericalð Þ2P
ij
ðCexactÞ2

vuuuut ;
where C denotes the variables w, Szz, Sxz or Syz.
Table 1 displays the CPU time for the explicit and implicit methods, together with the relative l2-norm of

the errors using mesh M0. From Table 1 we can observe that the implicit technique is capable of employing a
time step 25 times larger than that used for the explicit method and consequently the CPU time was signifi-
cantly reduced demonstrating the relative efficiency of the implicit method. Moreover, we can observe in Table
1 that the errors obtained in calculating the velocity by the implicit method were of the same order as the
errors given by the explicit method.
1
arison of the performance of the explicit and the implicit techniques on mesh M0

d dt size CPU time EðwÞ EðSzzÞ
it 4:62963� 10�5 155 h 58 min 5:2198� 10�3 2:0589� 10�2

it 1:15741� 10�3 4 h 54 min 5:2197� 10�3 2:0589� 10�2

rors EðSxzÞ and EðSyzÞ were about the same for both techniques and for this reason are not shown.



Table 2
Errors obtained on meshes M1, M2 and M3

EðwÞ EðSzzÞ EðSxzÞ EðSyzÞ
M1 2:6455� 10�3 9:4005� 10�3 4:8908� 10�3 4:8692� 10�3

M2 1:3845� 10�3 6:9864� 10�3 3:8249� 10�3 3:7656� 10�3

M3 8:5889� 10�4 3:9572� 10�3 2:0880� 10�3 2:0223� 10�3

Time steps used: 6:5100� 10�4 s (M1), 6:6880� 10�5 s (M2) and 4:2517� 10�5 s (M3).
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To analyse the convergence of the implicit technique we present, in Table 2, the errors obtained in calcu-
lating the velocity w using the three meshes. Additionally, Table 2 also shows the errors in the computation of
the non-Newtonian stress tensor S. We observe that the errors decreased with the mesh refinement demon-
strating the convergence of this implicit technique for low Reynolds number flows.

We used the results of Table 2 and computed estimates of the order of convergence (N i) of the implicit tech-
nique for solving the velocity field. We used the formula
Fig. 6.
Fr ¼ 0
Ni ¼
log

EðwÞMiþ1

EðwÞMi

� �
log

dxMiþ1

dxMi

� � ; i ¼ 1; 2 ð47Þ
Numerical simulation of jet buckling using explicit and implicit techniques. Flow visualization at selected times (Re ¼ 0:274 and
:478).
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and obtained N 1 ¼ 2:03 and N 2 ¼ 1:98. These results are in agreement with the Crank–Nicolson method
which is a second-order scheme.

To provide additional validation, the implicit technique was applied to simulate the jet buckling phenom-
enon (e.g. see [10,35–37,41]) of a very viscous fluid. We considered a low Reynolds number Newtonian axi-
symmetric jet flowing into an empty box which buckles (due to the high viscosity) when it reaches the box
floor. This problem was simulated using both the explicit and implicit techniques. The input data used in these
simulations were:

� Box size: 4 cm � 4 cm � 2 cm; inlet diameter (D): 6 mm; height of the inlet to the bottom of the box (H):
11 cm,
� Fluid specification: l ¼ 3:5 Pa s, q ¼ 1380 kg m�3,
� At the inlet we imposed a Poiseuille profile given by Eq. (45) with a mean velocity U ¼ 0:116 ms�1. Gravity

was assumed to be acting downwards with g ¼ 9:81 ms�2.
� A mesh size of (60 � 60 � 110) cells was used (dx ¼ dy ¼ dz ¼ 1 mm). The time step size for the explicit

calculation employed FACT ¼ 0:1 and FACT2 ¼ 0:5 while the implicit method used FACT ¼ 1 and
FACT2 ¼ 5. Thus, the implicit technique employed a time step 100 times larger than the time step used
in the explicit simulation.

The non-dimensional parameters were U and D so that the non-dimensional numbers used in these simu-
lations were Re ¼ 0:274 and Fr ¼ 0:478. We point out that Cruickshank and Munson [10] performed a series
of experiments on this problem and showed that a 3D-jet will buckle if both conditions Re < 1:2 and
H=D > 7:2 were satisfied. In our case, we have Re ¼ 0:274 < 1:2 and H=D ¼ 18:33 > 7:2 so that we would
expect to observe jet buckling.

The Freeflow3D code ran this problem using the implicit and explicit approach until t ¼ 1:20 s and the
results are displayed in Fig. 6 at selected times. We can see in Fig. 6 that both techniques displayed the jet
buckling phenomenon. Moreover, we can observe that the results obtained using the implicit technique are
similar to the results displayed by the explicit method. These results, therefore provide a qualitative verifica-
tion of the implementation of the implicit technique into the Freeflow3D code. In order to demonstrate the
robustness and efficiency of the implicit technique we let Freeflow3D code to run this problem further on until
time 2:80 s (see Fig. 7). We can see in Fig. 7 that from time t ¼ 1:60 s the fluid jet reached the lateral walls of
the box and continues to fill the entire box.
Fig. 7. Numerical simulation of jet buckling using the implicit technique. Flow visualization at selected times (Re ¼ 0:274 and Fr ¼ 0:478).
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4.2. Numerical simulation of the unsteady extrudate swell

The extrudate swell phenomenon is generally associated with viscoelastic fluids (for Newtonian fluids the
swell is not so pronounced) encountered in extrusion processes. In this problem a jet flows inside a tube of
diameter D and at the tube exit the jet is ejected into the air where, due to the normal stress differences, its
diameter is increased to Dmax. The extrudate swell is usually associated with low Reynolds number flows
and it has been studied by many researchers: both experimental and numerical results can be found in the lit-
erature (see for instance, Liang et al. [23], Tanner [39], Tomé et al. [43]).

To demonstrate that the implicit technique presented in this paper can deal with low Reynolds free surface
flows of highly viscoelastic fluids we simulated the extrudate swell of an Oldroyd-B fluid at increasing Weiss-
enberg numbers. We considered a circular tube with length 5R described in the previous section (see Fig. 5)
and specified an outflow boundary condition at a distance of 5R from the tube exit. At the tube entrance
we imposed the fully developed solutions given by Eqs. (45) and (46). We used a mesh of (16� 16� 80)-cells
(dx ¼ dy ¼ dz ¼ 0:625 mm) and the constants for the time step calculation were selected to be
FACT ¼ 0:5;FACT2 ¼ 5 (see Eq. (44)). We employed the data: R ¼ 5 mm, the gravity force was in the z-
direction with g ¼ 9:81 ms�2, l ¼ 25 Pa s; q ¼ 1000 kg m�3; k1 ¼ 0:01 s. The scaling parameters were
L ¼ R;U ¼ 0:5 ms�1 resulting in Re ¼ 0:1 and We ¼ 1. To demonstrate that the implicit technique can cope
with viscoelasticity we simulated the extrudate swell for three values of the effective Weissenberg number,
Weeffect ¼ ð1� k2=k1ÞWe. We set k2 ¼ 0:008 s; 0:005 s; 0:002 s so that we had Weeffect ¼ 0:2; 0:5; 0:8, respec-
tively. Freeflow3D then simulated the extrudate swell for these values of Weeffect. Initially the fluid entered
the empty tube, filled it and then a fluid jet was extruded into the atmosphere where eventually it reached
the outflow boundary. These simulations were performed until t ¼ 0:45 s for each case. The results are shown
in Fig. 8 which displays the fluid flow configuration at different times. At time t ¼ 0:10 s the jets are exiting the
tube and the computed velocity field with the three different values of Weeffect are similar. However, at time
t ¼ 0:20 s the differences between the three simulations are more noticeable. We can observe that the jet with
Weeffect ¼ 0:8 already displays a large swell while the jets with Weeffect ¼ 0:5 and Weeffect ¼ 0:2 have only started
to display swelling. At time t ¼ 0:30 s, we can observe the effect of gravity pulling the jets towards the outflow;
indeed, the jet with Weeffect ¼ 0:2 has already entered the outflow boundary. The last row of Fig. 8 presents the
results obtained at time t ¼ 0:45 s for the three simulations and we can clearly observe the effect of gravity on
the jets. Large variations in the results were not observed between times t ¼ 0:4 s and t ¼ 0:45 s so that it can
be assumed that steady state has been reached at that time. The final swelling ratios Sr ¼ Dmax=D obtained
were 42.04% for Weeffect ¼ 0:2, 65:15% for Weeffect ¼ 0:5 and 76:47% for Weeffect ¼ 0:8. To further demonstrate
the applicability of the implicit technique for solving the extrudate swell for low Reynolds numbers, we sim-
ulated the extrudate swell for Re ¼ 0:05 using the same input data used for Re ¼ 0:1. The results obtained (see
Fig. 9) are similar to those for Re ¼ 0:1; the only difference between the two cases was the larger swelling ratios
obtained for Re ¼ 0:05. The final swelling ratios obtained were 45:71% for Weeffect ¼ 0:2, 73:91% for
Weeffect ¼ 0:5 and 85:71% for Weeffect ¼ 0:8. These results are qualitatively in agreement with those found in
the literature (e.g. [23]).

4.3. Numerical simulation of jet buckling

To further demonstrate that the implicit method can cope with free surface flows of very viscous fluids we
simulated jet buckling of Newtonian fluids for very low Reynolds numbers. We considered a thin axisymmet-
ric jet, with diameter D ¼ 4 mm, flowing into an empty square box at a prescribed velocity. An inlet (inflow
boundary) was positioned at a height of 6 cm above the box floor from which an axisymmetric jet was issued
at a velocity of U ¼ 0:5 ms�1. The density of the fluid was q ¼ 1000 kg m�3 and the viscosity was assigned the
values of l ¼ 4; 20; 40; 200 Pa s so that the Reynolds number (Re ¼ qUD=l) took the values of
Re ¼ 0:5; 0:1; 0:05; 0:01, respectively. A mesh size of ð80� 80� 120Þ-cells was employed. In these simulations
H=D ¼ 15 > 7:2 and Re < 1 so that we expected jet buckling to occur in all of these simulations. A total of
four simulations were performed and the results are displayed in Figs. 10–13. The results corresponding to
Re ¼ 0:5 (see Fig. 10) and Re ¼ 0:1 (see Fig. 11) show that the jets start to buckle earlier than for the jets with
Re ¼ 0:05 and Re ¼ 0:01. The familiar effect known as ‘‘jet coiling” was observed; this has been well docu-



Fig. 8. Numerical simulation of the unsteady extrudate swell problem for various values of Weeffect: 0.2 (first column); 0.5 (second column);
0.8 (third column). Fluid flow visualization at selected times. Re ¼ 0:1.
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Fig. 9. Numerical simulation of the unsteady extrudate swell problem for various values of Weeffect: 0.2 (first column); 0.5 (second column);
0.8 (third column). Fluid flow visualization at selected times. Re ¼ 0:05.
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Fig. 10. Numerical simulation of jet buckling using the implicit technique (Re ¼ 0:5). Fluid flow visualization at times t ¼ 0:14 s, 0:20 s,
0:30 s, 0:40 s, 0:70 s and 1:0 s.

Fig. 11. Numerical simulation of jet buckling using the implicit technique (Re ¼ 0:1). Fluid flow visualization at times t ¼ 0:14 s, 0:20 s,
0:30 s, 0:40 s, 0:70 s and 1:0 s.
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Fig. 12. Numerical simulation of jet buckling using the implicit technique (Re ¼ 0:05). Fluid flow visualization at times t ¼ 0:14 s, 0:20 s,
0:30 s, 0:40 s, 0:70 s and 1:0 s.

Fig. 13. Numerical simulation of jet buckling using the implicit technique (Re ¼ 0:01). Fluid flow visualization at times t ¼ 0:14 s, 0:20 s,
0:30 s, 0:40 s, 0:70 s and 1:0 s.
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mented in the literature (see [10,35,36,41]). However, as the Reynolds number is decreased (see Figs. 12, 13)
the jets first become thicker and eventually they fold in an apparently chaotic manner. This effect has been
encountered experimentally and reported by Ribe and co-workers [36,37].

5. Concluding remarks

This paper has dealt with the development of an implicit technique for solving three-dimensional free sur-
face flows of Newtonian and Oldroyd-B fluids. The momentum equations were solved by the Crank–Nicolson
technique and an implicit method for treating the pressure on the free surface was developed so that the pres-
sure and the velocity fields could be decoupled. The Oldroyd-B constitutive equation has been solved using an
explicit finite difference technique developed by Tomé et al. [44]. The numerical method described in Section 3
has been implemented into the Freeflow3D code. The code then simulated the flow inside a 3D tube using
three meshes and compared the numerical results with known analytic solutions. The numerical computations
displayed good agreement with the respective analytic solutions and mesh refinement indicated the conver-
gence of this implicit technique. Further validation was provided by comparing the results of the simulation
of jet buckling with the results obtained with the original explicit approach. The implicit technique was then
used to solve two dynamic three-dimensional free surface flow problems: extrudate swell of highly viscoelastic
fluids and jet buckling of Newtonian fluids were solved. Both problems had very low Reynolds numbers. It
should perhaps be pointed out that for low Reynolds number Newtonian flows one should not employ this
approach: one should directly solve the creeping flow equations. However, this work is really aimed at visco-
elastic flows where the ‘‘Reynolds number” may be small in one part of the spatial domain or at points in time.
Mould filling would be a typical example and in these cases the use of this implicit discretization leads to two
orders of magnitude improvement in the computing time.
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